预约试听:15323438773
  


技术分享

News

AI专家Jerry Kaplan:人工智能如何引领产业变革

日期: 2017-12-06
浏览次数: 213

在日前苏州举行的2017英特尔中国行业峰会上,国际知名人工智能专家及技术创新企业家、畅销书《人工智能时代》作者、斯坦福大学人工智能与伦理学教授Jerry Kaplan在他的演讲《全球视野:人工智能如何引领产业变革》中,针对人工智能领域的发展历史,当前及未来的行业应用方向,以及如何引领产业变革的话题进行了分享。他强调,美好的未来还是要由人来亲手创造的,机器只是实现的重要工具,如何使用这些技术全靠我们,同时也对中国如何更好地发展人工智能产业提出了建议。下面就随网络通信小编一起来了解一下相关内容吧。


  以下是Jerry Kaplan教授的演讲实录。

  来自硅谷的问候,我自己住在加州,非常非常荣幸能够借英特尔的邀请,这次来到苏州参加会议,非常感谢各位的支持,我深感荣幸,能够有这样一个机会,与大家分享一下人工智能引领产业变革。不管是作为个人还是作为我的企业,我们与英特尔合作已久,如果没有英特尔,PC行业的变革甚至根本不会发生,今天我为大家介绍一下人工智能,简称AI。首先让我们确定一下人工智能究竟是什么?然后 让我们再来去介绍一下人工智能的发展历史。它现在又处在什么样的阶段?在这两大背景了解之后,我们为大家简单介绍一下AI领域全新的业务机会,对我们各个行业有什么样的影响。我想借此机会为大家提供一点建议,如何更好地将自己的业务与人工智能相融合。最后,我也希望聚焦一下中国市场,中国政府如何能够帮助企业去更好地迎接AI所引发的技术革命。

  首先想问大家一个问题,那就是人工智能究竟是什么?绝大多数人提到人工智能,我们都会担心,机器变得太智能了,甚至会进化出取代人的能力,会偷掉我们的工作,导致大量的失业,它甚至会直接控制整个世界,为什么会这样想?因为我们在电脑里面看到的,例如《终结者》。剩下的太吓人了,我就不放了。不管怎么样,电影里面都是非常让人恐慌的,但是我觉得人工智能还是非常光明的。电影里的不见得就真的成为现实,我们在这些科幻小说还有电影里面的看的实在是超出想象了,而且是有点过分,有点想象过度了。想想今天的机器人,人类的最有技巧的工程师们,再对比一下我们所开发出的机器人,在美国国防部的一些任务上能够实现多么惊人的成绩?大家可以看一下,这个机器人到底能做什么事情?今天的机器人实在是太蠢了。但是如果能够对他们进行优化和升级,他们真的能发展成终结者那样的智慧机器人吗?他们真的能起来反抗人类,最终统治世界吗?答案是否定的。因为机器人他们没有自己的欲望,没有自己的想法,他们只会去做人类给他们预先设置好的任务。哪怕是在他们去实现人类预定的这些目标当中,他们都是按照规定的程式来进行呈现。再回到最开始的问题,人工智能的定义究竟是什么?

  一个官方的定义是这样的,研究和开发与模拟人的智能,比如像视觉感知、语音识别、决策和语言翻译,来执行任务的计算机系统。

  但是,这个定义我觉得其实很不全面,我们经常会使用计算机做大量的任务,比人类的效率要高很多,我们打造的系统,也是希望能够远远超过人本身的效率,并不只是简单地照搬人的能力。人工智能简而言之,并不是让系统以及设备像人一样思考,人工智能的本质在我看来,是自动化,而并非是智能化,这是我对人工智能的一个诠释以及理解。新一代的设备,总是可以不断地提高人的效率的,不管是智力还是体力运动,以及相关的工作都可以获得大幅的提升。他们在执行这些任务的时候,要比人类更好,更快,而且成本更低。否则,那我们开发出来这些设备就没有什么用了嘛,但是走向未来,人工智能能够帮助我们做的会更多。它将会继续实现自动化,并不仅仅是因为机器更加智能,而是机器是人类开发出来的非常重要的工具,它们让人类更加有价值,让我们从冗杂的程式化的工作当中解放出来。

  下面让我们看一下人工智能的发展史,它从创始到现在出现了怎样的变化,为什么人工智能会出现这样的变化?

  人工智能的发展,从逻辑推理到机器学习

  人工智能实际上是在1956年达特茅斯会议上诞生的,一些科学家在这次会议期间进行了专门的讨论,在达特茅斯大学我们见证了这 个人工智能词语的诞生。这次会议的与会者认为智能背后的关键是逻辑推理,因此,在当时那场人工智能奠定基础的会议上,大家觉得逻辑推理的基础是什么?我们假设孔子是人,第二点, 所有人都会死,都是凡人,这个逻辑放到计算机的程序当中,利用这样的声明做出一个结论就是孔子会死,这是非常简单的例子。这是基于逻辑的方法,它有很多的应用,并且当下仍然有很大的影响,包括给我们正确的驾驶方向;在仓储中使用这些逻辑的方法进行更好的仓储、库存的管理、与此同时,对于计算机芯片,来满足它的规格,也需要这部分的逻辑推理,英特尔在这样的技术方面也是一个领先者,领导者。而在进入到其他的领域,光靠整个1956年达特茅斯的会议上所提出的这些逻辑推理能力难以解决,包括话语之间的翻译、语意理解,计算机视觉等等这是 其中的几个例子,问题到底在哪里?这些问题背后究竟有什么共同点? 它背后需要很多的是非常混乱的,非结构化的真实世界的数据是没有办法得到很好的解释,包括我们提到的这些声音,包括很多的图像语意,因此需要一种不同的方法能够让人工智能来进行更好的发展。 而现在我们也用这个词,机器学习来代表。

  机器学习背后是一系列的应用,包括软件技术,包括选择各种不同的使用模型、案例,包括大量的事例来提取模型。对同一领域的数据进行收集,如果这个体量足够大了,大到足以找到一些模型,但是你能够充分地利用那些模型来进行数据预测或者归类,特别是对于同一领域的新数据的事例进行预测或者分类。因此在另一方面,机器学习也是一个非常好的例子,对于你的未见的未来进行更好的预测、假设,机器学习的程序是用来识别图像,识别对象,而图像包括不同的猫猫狗狗的照片等, 它能够找到其中的相关性,这个相关性也许是任何一样东西例如股价的相关性,他找到这个相关性之后能够用来做股票,包括证券的销售等等。大家是这方面的专家,大家知道了逻辑推理和机器学习是两种不同的人工智能领域,不同的两条路。

  但是又有一个问题出现了,逻辑推理为什么在过去的几十年里如此风靡全球,现在反而机器学习变得大行其道呢?如果要说它背后简单的答案,也许是有不同的存储、网络、计算,数据正在发生深远的变革。他们变化的体量不是一点点,也不是许多,我想说这个词,是一个巨大的天量的海量的变化,而这样的变化也是让许多可能变得有更多的无限的可能。回顾过去的几十年的发展,在速度和内存上面差不多每一年提一倍,它的能力就能翻一番,这意味着当下的计算机,现在的能力比过去的三十年里,应该是翻了二十多倍,如果看到他的指数,是2的20次方,产生的体量应该是超过1百万了,因此甚至超越了我们直觉的分析和知识,来理解这巨大的海量,一百万代表的是速度方面,就是我们一个蜗牛的步行的速度和一个航天飞机,如果把它放到同一个阶数下面,他们的差别是多少?50万。再看苹果手表,苹果手表它的计算能力和传统的美国之前的航天项目,这是最早的,比1965年登月时候的计算能力要大得多,同样发生变化的也包括数位化的数据,所发生的体量也是海量巨大的。

  这为什么改变了整个人工智能的发展方向和方法呢?首先第一种方法,人工智能当中的推理法,他只要少量的数据就能够完成很多的工作,只要输入端很少的事实,能够有很好的推理和演绎,得出很多有用的用户案例,而这对于我们现存的技术,特别是对于20、30年当时现成的技术而言,这种方法无疑是有效的。对比一下,30年之前,计算机,或者说机器学习的算法还缺少数据,就算有这部分的数据,它背后的存储处理能力,在当时也是会限制能够发展的方向和速度。因此,再回到20、30年之前,这是为什么逻辑推算是主导。

  而在那个时候,人们并不非常关心机器学习,随着时间的推移,情况发生了逆转。机器学习它能够带来的是非常混乱的,非结构化的真实世界当中的问题,因为数据量变得大了很多。他需要大量的计算能力, 需要很强的云存储能力,而且需要更大量的数据,数据越多,结果越好,越准,因此,机器学习是一个非常非常好的一种匹配,特别是在 一个数据密度非常高的世界当中,而且是在我们即将进入5G的万物互联的时代。这是人工智能的发展史。

  人工智能一些重要的行业应用

我们也看到了一系列的新的不同的应用,和人工智能息息相关,但重要的是,我们也需要了解

关键字:人工智能
编辑:李强 引用地址:http://www.eeworld.com.cn/wltx/article_2017120618215.html


News / 推荐新闻 More
2021 - 07 - 27
机器视觉检测技术的发展趋势随着工业制造技术及加工工艺的提高与改进,对检测手段、检测速度和精度提出了更高要求,使得机器视觉检测技术在各大行业广泛应用,发展势头强劲。下面,我们就来细数下机器视觉检测发展的几个历程和趋势。1、初级视觉理论:主要针对光学成像的逆问题,是由能从二维光强度阵列恢复三维可见表面物理性质的一系列处理过程组成。这里各过程的输入数据及计算目的都是能够明确描述的,如边缘检测、立体匹配、由运动恢复结构等方法。在三维物体投影成二维图像过程中,三维信息有很多损失,从而导致病态问题产生,因此加强对初级视觉过程及其约束条件的研究就显得格外重要,其主要针对 3D 重建。2、主动视觉理论:主动视觉指观察者以确定或不定方式运动跟踪目标、感知对象的技术方法。在主动视觉中,观察者和目标物体也可同时运动,观察者的运动为研究目标的形状、距离和运动提供了附加条件,重要研究方向为目标跟踪,导弹拦截等。3、...
2021 - 07 - 26
PLC控制柜维护保养21法则一、为什么需要维护1、为了延长使用寿命;2、为了设备运行的稳定性;3、这也是5S的一种体现。二、不维护容易出现的问题电柜太脏会设备短路,打弧,烧坏设备;电柜风扇过滤网堵塞,散热不好会导致设备稳定性差;湿度过大会设备短路;某些大电流位置局部过热时间长了会烧坏设备。三、准备工作各种工具:螺丝刀,扳手,摇表,万用表,钳形电流表;吸尘器;热风枪,记号笔,锉刀等;备件:风扇过滤网,接触器辅助触头,继电器线圈,热缩管,导电膏。人员:不仅需要电工,还需要程序员。因为如果程序员参与,把软件的维护也做起来,可以提前预防消除很多软故障。四、注意事项做好规划,制定详细的步骤,按部就班。永远不要相信一拍脑袋一个主意,而是先把所有的方方面面考虑好,拿着规划一步一步做:1.  安全第一:拆卸设备之前先断电,注意安全;2.  清洁电柜的时候注意不要把灰弄到到处都是;3.&...
2021 - 07 - 20
机器视觉:系统不稳定性因素分析1 引言   机器视觉的研究始于20世纪50年代二维图像的模式识别[1],它起初被设计用来代替人眼从事检测识别的工作,可以大大提高检测的工作效率以及降低人眼疲劳带来的检测结果的不一致性。机器视觉检测发展至今,在许多方面已经发展到可以完成人眼难以完成的工作,如高精度的测量以及对特定产品的高速分级,还有利用红外线、紫外线、X射线等检测技术检测人类视觉无法检测到的事物[2]。但机器视觉系统设计的难点在于如何保证其可靠性与稳定性,无论从光源,相机等硬件上还是从图像处理软件上的设计,对机器视觉的稳定性都有重要影响。   2 机器视觉系统组成典型的机器视觉系统一般由图像的获取、图像的处理和分析、输出或显示三部分组成。按照视觉系统组成结构主要分为两大类:PC或板卡式机器视觉系统(PC-Based Vision System),以及嵌入...
2021 - 07 - 16
资深电气工程师总结的PLC最全编程算法,收藏备用!PLC编程算法(1):开关量PLC中无非就是三大量:开关量,模拟量,脉冲量。搞清楚三者之间的关系,你就能熟练的掌握PLC了。1,开关量也称逻辑量,指的是两个取值,0或1,ON或OFF。它是最常用的控制,对它进行控制是PLC的优势,也是PLC最基本的应用。开关量控制的目的是,根据开关量的当前输入组合与历史的输入顺序,使PLC产生相应的开关量输出,以使系统能按一定的顺序工作。所以,有时也称其为顺序控制。而采用顺序控制又分为手动,半自动或自动。而采用的控制原理有分散,集中与混合控制方式。2,模拟量是指一些连续变化的物理量,如电压,电流,压力,速度,流量等。PLC是由继电控制引入微处理技术后发展而来的,可方便及可靠地利用开关量控制。由于模拟量可转换成数字量,数字量只是多位的开关量,故经转换后的模拟量,PLC也完全可以可靠的进行处理控制。由于连续的生...
技术分享
 
2021 / 07 / 27
机器视觉检测技术的发展趋势随着工业制造技术及加工工艺的提高与改进,对检测手段、检测速度和精度提出了更高要求,使得机器视觉检测技术在各大行业广...
 
联系方式

深圳市龙华新区观澜第三工业区观中街5号联为科技园

1505031685@qq.com

15323438773 杨老师  

0755-29495142

预约免费试听
  • 您的姓名:
  • *
  • 公司名称:
  • 地址:
  • 电话:
  • *
  • 传真:
  • E-mail:
  • 邮政编码:
  • 留言主题:
  • 详细说明:
  • *
     
联为智能教育专业打造自动化教育产、学、研一体化平台,成为智能制造教育领导者。联为plc培训班精心打造专业培训实操基地,专门为学员研发一批教学设备,包括机器人学习教学连线,plc培训学习教学连线,工业机器人培训、plc编程培训等专业的教学设备,让学员真正理论实践一体,学以致用,从实践交流中体会知识的精髓,来一场完美的职业转身。
扫码学习
深圳联为智能教育感谢您的关注!
plc学习
在线直播间
plc培训班
小胡老师
Copyright ©2005 - 2013 深圳市联为智能教育有限公司


犀牛云提供企业云服务
5
电话
  • 15323438773
6
二维码
回到顶部