预约试听:15323438773
  


培训资料分类
热门人气资料 / Download More
发布时间: 2018 - 01 - 06
图像处理与机器视觉第一章 图像增强的研究和发展现状  图像在采集过程中不可避免的会受到传感器灵敏度、噪声干扰以及模数转换时量化问题等各种因素的影响,而导致图像无法达到令人满意的视觉效果,为了实现人眼观察或者机器自动分析、识别的目的,对原始图像所做的改善行为,就被称作图像增强。图像增强包涵了非常广泛的内容,凡是改变原始图像的结构关系以取得更好的判断和应用效果的所有处理手段,都可以归结为图像增强处理,其目的就是为了改善图像的质量和视觉效果,或将图像转换成更适合于人眼观察或机器分析、识别的形式,以便从中获取更加有用的信息。  常用的图像增强处理方式包括灰度变换、直方图修正、图像锐化、噪声去除、几何畸变校正、频域滤波和彩色增强等。由于图像增强与感兴趣的物体特性、观察者的习惯和处理目的密切相关,尽管处理方式多种多样,但它带有很强的针对性。因此,图像增强算法的应用也是有针对性的,并不存在一种通用的、适应各种应用场合的增强算法。于是,为了使各种不同特定目的的图像质量得到改善,产生了多种图像增强算法。这些算法根据处理空间的不同分为基于空间域的图像增强算法和基于变换域的图像增强算法。基于空间域的图像增强算法又可以分为空域的变换增强算法、空域的滤波增强算法以及空域的彩色增强算法;基于变换域的图像增强算法可以分为频域的平滑增强算法、频域的锐化增强算法以及频域的彩色增强算法。  尽管各种图像增强技术已取得了长足的发展,形成了许多成熟、经典的处理方法,但新的增强技术依然在日新月异地发展完善,不断推陈出新,其中尤其以不引起图像模糊的去噪声方法(如空域的局部统计法)和新的频域滤波器增强技术(如小波变换,K-L变换等)最为引人瞩目。  第二章 图像增强的基本方法  一般而言,图像增强是根据具体的应用场景和图像的模糊情况而采用特定的增强方法来突出图像中的某些信息,削弱或消除无关信息,以达到强调图像的整体或局部特征的目的。常用的图像增强方法有灰度变换、直方图修正、噪声清除、图像锐化、频域滤波、同态滤波及彩色增强等。图像增强的方法主要分为两类:空域增强法和频域增强法。空域增强法直接针对图像中的像素,对图像的灰度进行处理;频域增强法是基于图像的Fourier变换式对图像频谱进行改善,增强或抑制所希望的频谱。  2.1灰度变换  灰度变换增强的原理如下:设r和s分别代表原始图像和增强图像的灰度,T(•)为映...
发布时间: 2018 - 01 - 05
Python 图像处理库 Pillow 入门(含代码)Pillow是Python里的图像处理库(PIL:Python Image Library),提供了了广泛的文件格式支持,强大的图像处理能力,主要包括图像储存、图像显示、格式转换以及基本的图像处理操作等。 1)使用 Image 类PIL最重要的类是 Image class, 你可以通过多种方法创建这个类的实例;你可以从文件加载图像,或者处理其他图像, 或者从 scratch 创建。要从文件加载图像,可以使用open( )函数,在Image模块中: from PIL import Image im = Image.open("E:/photoshop/1.jpg")加载成功后,将返回一个Image对象,可以通过使用示例属性查看文件内容: print(im.format, im.size, im.mode)('JPEG', (600, 351), 'RGB')format 这个属性标识了图像来源。如果图像不是从文件读取它的值就是None。size属性是一个二元tuple,包含width和height(宽度和高度,单位都是px)。 mode 属性定义了图像bands的数量和名称,以及像素类型和深度。常见的modes 有 “L” (luminance) 表示灰度图像, “RGB” 表示真彩色图像, and “CMYK” 表示出版图像。如果文件打开错误,返回 IOError 错误。只要你有了 Image 类的实例,你就可以通过类的方法处理图像。比如,下列方法可以显示图像:im.show()2)读写图像PIL 模块支持大量图片格式。使用在 Image 模块的 open() 函数从磁盘读取文件。你不需要知道文件格式就能打开它,这个库能够根据文件内容自动确定文件格式。要保存文件,使用 Image 类的 save() 方法。保存文件的时候文件名变得重要了。除非你指定格式,否则这个库将会以文件名的扩展名作为格式保存。加载文件,并转化为png格式:"Python Image Library Test"from PIL import Imageim...
发布时间: 2017 - 12 - 25
当机器视觉遇到“人工智能-工业4.0”.....人们感知外界信息的80%是通过眼睛获得的,图像包含的信息量是最巨大的。机器视觉给机器人装上了“眼睛”,成为工业4.0的重点,互促发展是技术的必然,更是时代的选择。 工业4.0是什么?在人类历史发展前期,生产力的增长几不可察,生活水平的提升也非常缓慢。而从200多年前开始,生产力发生了飞跃性变化,这一翻天覆地的变化得益于工业革命。如果将工业的发展历史分成4个时代,那么工业革命1.0使机器生产代替了手工劳动;工业革命2.0实现了流水线生产;工业革命3.0实现了自动化生产。工业生产方式则依次经历了机械化、流水线生产、自动化。2013年4月,在汉诺威工业博览会上,德国正式推出工业4.0的概念,旨在提升制造业的智能化水平。德国工业4.0是指利用物联信息系统(Cyber—PhysicalSystem简称CPS)将生产中的供应,制造,销售信息数据化、智慧化,最后达到快速、有效、个人化的产品供应。其实质是“互联网+制造”。在成产层面,“工业4.0”是生产设备间的互联、设备和产品的互联、虚拟与现实的互联,甚至是未来的万物互联。工业4.0理念的提出促进了智能工厂的实现,生产方式必将迎来巨大改变。工业4.0--机器视觉是核心目前视觉技术在工业生产中的应用大致可分为两类:质量控制和辅助生产。其中,质量控制主要是指对产品缺陷的检测,识别不良品,此类设备在国内外自动化生产线已有广泛使用。辅助生产则是利用视觉技术给机器人提供动作执行依据,国内市场尚待开发。工业机器人的发展,势必引起机器视觉新增长。我国正处于工业机器人的发展拐点,市场潜力巨大,据国际机器人联盟(IFR)估计,中国市场对工业机器人的发展占主导地位,2018年全球三分之一的工业机器人将会安装在中国,这势必会引发机器视觉的广泛应用。机器视觉是人类视觉的延伸,与多种技术的融合逐步加深,将成为实现自动化和智能化的重要手段。工业4.0与智能制造息息相关,而机器视觉是实现智能制造的重要抓手。联为智能教育与工业4.0德国推出“工业4.0”以来,作为老牌的机器视觉人才培养学校,联为智能教育不落人后,先后推出了机器视觉图像处理实战、运动控制卡等精品课程,不断的为国内大中型自动化企业输送大量的机器视觉工程师人才 智能工厂实验系统所谓“智能工厂”是指通过引入大数据技术进行分析优化管理,在...
发布时间: 2017 - 12 - 18
最新机器人视觉系统介绍,给机器人装上“眼睛”机器视觉概述使机器具有像人一样的视觉功能,从而实现各种检测、判断、识别、测量等功能。一个典型的机器视觉系统组成包括:图像采集单元(光源、镜头、相机、采集卡、机械平台),图像处理分析单元(工控主机、图像处理分析软件、图形交互界面),执行单元(电传单元、机械单元)机器视觉系统通过图像采集单元将待检测目标转换成图像信号,并传送给图像处理分析单元。图像处理分析单元的核心为图像处理分析软件,它包括图像增强与校正、图像分割、特征提取、图像识别与理解等方面。输出目标的质量判断、规格测量等分析结果。分析结果输出至图像界面,或通过电传单元(PLC等)传递给机械单元执行相应操作,如剔除、报警等,或通过机械臂执行分拣、抓举等动作。机器视觉优势机器视觉系统具有高效率、高度自动化的特点,可以实现很高的分辨率精度与速度。机器视觉系统与被检测对象无接触,安全可靠。人工检测与机器视觉自动检测的主要区别有: 机器视觉的应用领域•识别标准一维码、二维码的解码光学字符识别(OCR)和确认(OCV)•检测色彩和瑕疵检测零件或部件的有无检测目标位置和方向检测•测量尺寸和容量检测预设标记的测量,如孔位到孔位的距离•机械手引导输出空间坐标引导机械手精确定位 机器视觉系统的分类•智能相机•基于嵌入式•基于PC 机器视觉系统的组成•图像获取:光源、镜头、相机、采集卡、机械平台•图像处理与分析:工控主机、图像处理分析软件、图形交互界面。•判决执行:电传单元、机械单元•光源---种类LED:寿命长/可以有各种颜色/便于做成各种复杂形状/光均匀稳定/可以闪光;荧光灯:光场均匀/价格便宜/亮度较LED高;卤素灯:亮度特别高/通过光纤传输后可做成;氙灯:使用寿命约1000小时/亮度高,色温与日光接近。(大部分机器视觉照明采用LED) •光源---光路原理照相机并不能看见物体,而是看见从物体表面反射过来的光。       镜面反射:平滑表面以对顶角反射光线       漫射反射:粗糙表面会从各个方向漫射光线       发散反射:多数表面既有纹理,又有平滑表面,会对光线进行发散反射 •光源---作用和要求在机器视觉中...
发布时间: 2017 - 12 - 11
盘点 | 机器人视觉工程师必须知道的工业相机相关问题1:工业相机的丢帧的问题是由什么原因引起的?经常会有一些机器视觉工程师认为USB接口的工业相机会造成丢帧现象。一般而言,工业相机丢帧与工业相机所采用的传输接口是没有关系的,无论是USB,还是1394、GigE、或者是CameraLink。设计不良的驱动程序或工业相机硬件才是造成丢帧的真正原因:设计不良的工业相机之所以会发生丢帧的现象,其实就是资料通道的堵塞,无法及时处理,所以新的图像进来时,前一张可能被迫丢弃,或是新的图像被迫丢弃。要解决这问题,需要设计者针对驱动程序与工业相机硬件资料传输的每个环节进行精密的设计。2:工业相机输入、输出接口有哪些?在机器视觉检测技术中,工业相机的输入、输出接口有Camera Link、IEEE 1394、USB2.0、Ethernet、USB3.0几种;3:知道被测物的长、宽、高以及要求的测量精度,如何来选择CCD 相机和工业镜头,选择以上器件需要注意什么?首先要选择合适的镜头。选择镜头应该遵循以下原则:1).与之相配的相机的芯片尺寸是多大;2).相机的接口类型是哪种的,C 接口,CS 接口还是其它接口;3).镜头的工作距离;4).镜头视场角;5).镜头光谱特性;6).镜头畸变率;7).镜头机械结构尺寸;选择CCD 相机时,应该综合考虑以下几个方面:1).感光芯片类型;CCD 还是CMOS2).视频特点;包括点频、行频。3).信号输出接口;4).相机的工作模式:连续,触发,控制,异步复位,长时间积分。5).视频参数调整及控制方法:Manual、RS232.同时,选择CCD 的时候应该注意,l inch = 16mm 而不是等于25.4mm.4:CCD 相机与CMOS 相机的区别在哪里?(1) 成像过程CCD 与CMOS 图像传感器光电转换的原理相同,他们最主要的差别在于信号的读出过程不同;由于CCD仅有一个(或少数几个)输出节点统一读出,其信号输出的一致性非常好;而CMOS 芯片中,每个像素都有各自的信号放大器,各自进行电荷-电压的转换,其信号输出的一致性较差。但是CCD 为了读出整幅图像信号,要求输出放大器的信号带宽较宽,而在CMOS 芯片中,每个像元中的放大器的带宽要求较低,大大...
发布时间: 2017 - 12 - 04
工业机器人视觉引导系统MVRobotVision机器人视觉引导系统是配合工业机器人工作的机器视觉系统,提供高效精准的视觉引导功能,适应多维运动工业机器人对视觉系统轻便、高速、高精度的要求,配合工业机器人实现高效智能化的产线改造,为自动化产线,传送带分拣,组装、自动码垛卸垛以及其他复杂加工等机器人应用提供智能视觉引导解决方案。2D视觉引导MVRobotVision机器人2D视觉引导系统主要应用于流水线传送跟踪、精确定位、姿态调整三个方面。3D视觉引导MVRobotVision机器人3D视觉引导系统主要应用于工件分拣、码垛与卸垛、输送机分拣定位三个方面。系统特点柔性化定位工装:节约在多品种情况下传统的机械定位工装设计成本,使工装定位环节实现真正的柔性化。 智能形状识别引擎,智能视觉学习训练:系统内嵌智能形状识别引擎,能够识别常见的基本几何图形。对于复杂形状,系统可以进行模板学习训练,进而实现复杂形状的识别精准数据:降低环境光影响,快速准确获取扫描数据;先进高效的数据分析,实现高速精确定位识别,精度可达0.1mm
发布时间: 2017 - 11 - 27
作为机器视觉的研究者与项目开发者,最近有人问我如果想要涉水这个领域,该如何下水,总是担心自己被“淹死”在这个领域,又担心自己不试试水不甘心。回顾了一下一年来自己差点被“淹死”的经历,总结了一下计算机视觉入门应该掌握的图像处理方面的知识点。顺便给大家一个鼓励,小编意外涉水这个领域,在这之前,小编极讨厌编程,打心底里认为“图像处理”纯属“陶冶情操”的玩意儿,一个不幸的经历,小编深陷其中不能自拔,在痛苦中挣扎,挣扎过后,硬着头皮算是有了一小点点进步。所以如果你感觉痛苦,或许就对了,那就在痛苦中前进吧。在此送大家一句话“专业的人做专业的事”,为什么呢?一定要明白自己想做什么,是研究算法,还是乐意编程实现算法,还是只是想做应用。这三个意图是不同的,要知道自己想要什么。比如:如果是做应用的,就不要过度在于算法的深层原理,你会用就好了。否则你会一篇混乱把自己搞的一团糟,先把算法用起来能为我们做事情,然后心有余力再去研究为什么。下面做了一个小小的梳理,跟大家分享一下,以助快速脱离痛苦。 数学基础知识1、矩阵的四则运算及其物理意义2、逻辑运算3、旋转矩阵与旋转向量4、SVD分解5、卷积的定义及运算 图像格式的基础1、图像的存储方式及图像格式2、图像的读取与现实3、图像存储4、图像像素与图像 图像像素运算1、四则运算2、逻辑运算3、像素提取4、通道分离与混合5、像素的意义与对比度 图像几何运算1、图像放缩2、图像旋转3、仿射变换4、透视变换5、翻转变换6、图像错切 图像直方图1、像素的均值与方差2、直方图统计3、像素内方差4、插值算法 色彩空间1、RGB2、HSL3、YUV4、图像灰度化(多种方法)5、色彩空间转换6、图像饱和度7、主色彩分析 图像滤波1、均值滤波2、中值滤波3、高斯滤波4、双边滤波5、椒盐噪声6、高斯噪声7、低通滤波8、高通滤波9、图像锐化 图像形态学处理1、腐蚀2、膨胀3、开闭操作4、形态学梯度5、顶帽6、黑帽7、分水岭8、内梯度与外梯度 边缘检测1、canny边缘检测2、Sobel 边缘检测3、Prewitt边缘检测4、LOG边缘检测5、Hough 圆与直线检测6、阈值分割 图像二值化1.全局阈值法2.局部阈值法3.OSTU二值化4.得到5.Ed...
发布时间: 2017 - 11 - 25
Halcon教程之单相机标定在HALCON所有算子中,变量皆是如上格式,即:图像输入:图像输出:控制输入:控制输出。机器视觉-汪工:其中四个参数任意一个可以为空。控制输入可以是变量、常量、表达式;控制输出以及图像输入和输出必须是变量。 1.caltab_points:从标定板中读取marks中心坐标,该坐标值是标定板坐标系统里的坐标值,该坐标系统以标定板为参照,向右为X正,下为Y正,垂直标定板向下为Z正。该算子控制输出为标定板中心3D坐标。2.create_calib_data:创建Halcon标定数据模型。输出一个输出数据模型句柄。3.set_calib_data_cam_param:设定相机标定数据模型中设置相机参数的原始值和类型。设置索引,类型,以及相机的原始内参数等。4.set_calib_data_calib_object:在标定模型中设定标定对象。设定标定对象句柄索引,标定板坐标点储存地址。5.find_caltab:分割出图像中的标准标定板区域。输出为标准的标定区域,控制6.find_marks_and_pose:抽取标定点并计算相机的内参数。输出MARKS坐标数组,以及估算的相机外参数。即标定板在相机坐标系中的位姿,由3个平移量和3个旋转量构成。7.set_calib_data_observ_points( : : CalibDataID, CameraIdx, CalibObjIdx,CalibObjPoseIdx, Row, Column, Index, Pose : )收集算子6的标定数据,将标定数据储存在标定数据模型中。输入控制分别为标定数据模型句柄,相机索引,标定板索引,位姿索引,行列坐标,位姿。8.calibrate_cameras( : : CalibDataID : Error) 标定一台或多台相机,依据CalibDataID中的数据。控制输出平均误差。9.get_calib_data( : : CalibDataID, ItemType, ItemIdx, DataName : DataValue) 获得标定数据。依靠索引号和数据名称来返回输出的数据值。可查询与模型相关的数据,与相机相关的数据(包括相机的内外参数等),与标定对象相关的数据,与标定对象的姿态相关的数据。控制输出是要查询的标定数据。如:get_calib_da...
发布时间: 2017 - 11 - 20
发布时间: 2017 - 11 - 16
Halcon学习教程之二:摄像头获取图像和相关参数1、close_all_framegrabbers ( : : : )   关闭所有图像采集设备。2、close_framegrabber ( : : AcqHandle : )    关闭Handle为AcqHandle的图像采集设备。3、open_framegrabber ( : : Name, HorizontalResolution,VerticalResolution, ImageWidth, ImageHeight, StartRow, StartColumn,Field, BitsPerChannel, ColorSpace, Generic, ExternalTrigger,CameraType, Device, Port, LineIn : AcqHandle )     打开图像采集设备参数信息:   Name:图像采集设备的名称   HorizontalResolution和VerticalResolution:分别指预期的图像采集接口的水平分辨率和垂直分辨率   ImageWidth和ImageHeight:指预期图像的宽度部分和高度部分。   StartRow和StartColumn:指显示预期图像的开始坐标   Field:预期图像是一半的图像或者是完整图像   BitsPerChannel:每像素比特数和图像通道   ColorSpace:输出的色彩格式的抓住图像{gray、raw、rgb、yuv、default}   Generic:通用参数与设备细节部分的具体意义。   ExternalTrig...
发布时间: 2017 - 10 - 16
完成halcon与C#混合编程的环境配置后,进行界面布局设计构思每一个按钮所需要实现的功能,将Halcon导出的代码复制至相应的C#模块下即可。 halcon源程序:dev_open_window(0, 0, 512, 512, 'black', WindowHandle)read_image (Image, 'C:/Users/Administrator/Desktop/猫.jpg')dev_display(Image)get_image_size(Image, Width, Height)rgb3_to_gray(Image, Image, Image, ImageGray)dev_display(ImageGray)注意:写halcon程序时,如果过程中的图片需要显示出来,则需要在每个过程中都添加dev_display(**)第一步:导出C#程序,建立项目,并添加此类 ////  File generated by HDevelop for HALCON/DOTNET (C#) Version 10.0////  This file is intended to be used with the HDevelopTemplate or//  HDevelopTemplateWPF projects located under %HALCONEXAMPLES%\c#using System;using HalconDotNet;public partial class HDevelopExport{  public HTuple hv_ExpDefaultWinHandle;  // Main procedure   private void action()  {    // Local iconic variables     HObject ho_Image, ho_ImageGray;    // Local control variables     HTuple hv_Width, hv_Height;  ...
发布时间: 2017 - 08 - 26
科普:机器视觉工业镜头专业术语详解(图)机器视觉系统中,镜头相当于人的眼睛,其主要作用是将目标的光学图像聚焦在图像传感器(相机)的光敏面阵上。视觉系统处理的所有图像信息均通过镜头得到,镜头的质量直接影响到视觉系统的整体性能。下面对机器视觉工业镜头的相关专业术语做以详解。 一、远心光学系统:  指主光线平行于镜头光学轴的光学系统。而光从物体朝向镜头发出,与光学轴保持平行,甚至在轴外同样如此,则称为物体侧远心光学系统。光从镜头朝向影像,与与光学轴保持平行,甚至在轴外同样如此,则称为影像侧远心光学系统。 二、远心镜头:  远心镜头指主光线与镜头光源平行的镜头。有物体侧的远心,成像侧的远心,两侧的远心行头等方式。通常的镜头 主光线与镜头光轴有角度,因此工件上下移动时,像的大小有变化。 两方远心境头 主物方,像方均为主光线与光轴平行光圈可变,可以得到高的景深,比物方远心境头更能得到稳定的像最适合于测量用图像处理光学系统,但是大型化成本高 物方远心境头 只是物方主光线与镜头主轴平行工件上下变化,图像的大小基本不会变化使用同轴落射照明时的必要条件,小型化亦可对应 像方远心境头 只是像方主光线与镜头光轴平行相机侧即使有安装个体差,也可以吸收摄影倍率的变化用于色偏移补偿,摄像机本应都采用这种镜头 三、远心光学系统的特色:  优点:更小的尺寸。减少镜头数量,可降低成本。缺点:上下移动物体表面时,会改变物体尺寸或位置。  优点:上下移动物体表面时,不会改变物体尺寸或位置。使用同轴照明时。可使用更小的尺寸。缺点:未使用同轴照明时,大于标准镜头的尺寸。  优点:与MML相似,但镜头凸缘后端的尺寸出现极大差异时,会改善精确度。缺点:与MML相似,但成本比MML更高。 四、远心:  Telecentricity是指物体的倍率误差。倍率误差越小,Telecentricity越高。Telecentricity有各种不同的用途,在镜头使用前,把握Telecentricity很重要。远心镜头的主光线与镜头的光轴平行,Telecentricity不好,远心镜头的使用效果就不好;Telecentricity可以用下图进行简单的确认。...
发布时间: 2017 - 07 - 03
机器视觉:给智能制造一双慧眼机器视觉的原理和用途首先我先对机器视觉做一个简要的介绍。我们知道人类感知世界的一个很重要的信息来源是靠视觉,而机器视觉是通过计算机来模拟人类的视觉功能让计算机获得相关的细节信息并且加以理解。它的原理是计算机或者是相关图片处理器从客观的图像中提取信息进行处理,加以理解并且最终用于检测还有控制等领域,它涉及的领域包括人工智能、计算机科学、图像处理还有模式识别等很多领域。由于有了图像处理还有计算机等等自动化设备的帮忙,机器视觉其实是远远超过人类的极限的,所以它的优势也十分明显,包括高效率、高精度、高自动化,以及能够很好适应比较差的环境。所以在一些不适合人工作业的危险的工作环境,或者是我们人类视觉很难满足要求的场合,机器视觉是可以用来代替人工视觉的。在这种检测、测量、识别和定位等功能上,机器视觉更是能够更好的胜任。除了以上这些,它还能够提高生产效率以及自动化的程度,实现信息集成,所以在工业领域应用很广泛,是智能制造很重要的基础。机器视觉在工业领域的应用分类我们在这里重点讲一下机器视觉在工业领域的应用是怎么样进行分类的。它依照工作环境可以分为,一种是在大规模或者是说测试要求能力高的生产线上,比如说分装、印刷、分拣或者是在野外这样的不适合人员工作的环境中用来代替传统的人工测量或者测试。这样能够达到人工无法达到的可靠性,或者是自动化程度。另外一种是必须要用到高性能或者精密仪器组件的专业设备。其实最早带动整个机器视觉行业的是半导体制造设备,比如说上游晶圆加工的分类切割,这样的设备都非常依赖高精度的测量和对运动的部件进行引导和定位。除了在工业领域机器视觉的应用比较成熟之外,在一些非工业领域机器视觉的优势同样是很明显的,具备非常大的发展运用空间。因为机器视觉它成本低、运用广泛、准确度高的特点,它在交通行业,一些车牌识别、流量控制、违章识别都可以得到广泛的运用,比如说另外一些细分新行业如森林防火、飞机跑道异物检测,比如说大疆精灵4无人机就首次引入了机器视觉。非工业领域同时还包括三维和多维的,机器视觉同样也有很巨大的空间。比如说前沿技术带来的一些新领域,像无人机、服务器人都对机器视觉提出了新的要求。那么未来对机器视觉的应用会越来越多,机器视觉也可以促进服务机器人这样的产业的发展,让机器人能够在更多的场合得到应用。机器视觉的组成与产业链接下来我们讲一下第二部分,就...
发布时间: 2017 - 07 - 03
机器视觉相机介绍 机器视觉专业论坛1、简介              机器视觉相机的目的是将通过镜头投影到传感器的图像传送到能够储存、分析和(或者)显示的机器设备上。可以用一个简单的终端显示图像,例如利用计算机系统显示、存储以及分析图像。2、分类       按照芯片类型可以分为CCD相机、CMOS相机;按照传感器的结构特性可以分为线阵相机、面阵相机;按照扫描方式可以分为隔行扫描相机、逐行扫描相机;按照分辨率大小可以分为普通分辨率相机、高分辨率相机;按照输出信号方式可以分为模拟相机、数字相机;按照输出色彩可以分为单色(黑白)相机、彩色相机;按照输出信号速度可以分为普通速度相机、高速相机;按照响应频率范围可以分为可见光(普通)相机、红外相机、紫外相机等。3、CCD与CMOS区别CCD和CMOS是现在普遍采用的两种图像工艺技术,它们之间的主要差异在于传送方式的不同,用过相机的人肯定对这两个名词不会陌生,可是对它们之间的性能区别,却并不是很了解。这里将做简单的比较说明。1)噪声差异:由于CMOS的每个感光二极管都需要搭配一个放大器,若以百万像素计算的话,那就需要上百万个的放大器,然而放大器属于模拟电路,很难让所得的每个结果都保持一致。而CCD只需要一个放大器放在芯片边缘,与CMOS相比,它的噪声相对减少很多,大大提高了图像品质。2)耗电量差异:CMOS采用主动式图像采集方式,感光二极管所产生的电荷会直接由旁边的电晶体放大输出;而CCD为被动式采集方式,必须外加12~18V的电压以使每个像素中的电荷移送到传输通道。因此CCD就必须设计更精密的电源线路和耐压强度,这样使得CCD的耗电量远远高出CMOS,根据计算CMOS的耗电量仅是CCD的1/8~1/10。3)分辨率差异:由于CMOS的每个像素都比CCD复杂,且其像素尺寸很难达到CCD的水平,因此,当我们比较相同尺寸的CCD与CMOS时,CCD的分辨率通常会优于CMOS传感器的水平。例如,维视数字图像技术有限公司生产的4.40μm*4.40μm像元大小的CCD相机分辨率为1628*1236,而5.2μm*5.2μm像元大小的CMOS相机分辨率为1280*1024,对比结果明显得出:同尺寸大...
发布时间: 2017 - 06 - 06
机器视觉基础及硬件选型.pdf

盘点 | 机器人视觉工程师必须知道的工业相机相关问题

盘点 | 机器人视觉工程师必须知道的工业相机相关问题

1:工业相机的丢帧的问题是由什么原因引起的?

经常会有一些机器视觉工程师认为USB接口的工业相机会造成丢帧现象。一般而言,工业相机丢帧与工业相机所采用的传输接口是没有关系的,无论是USB,还是1394、GigE、或者是CameraLink。设计不良的驱动程序或工业相机硬件才是造成丢帧的真正原因:设计不良的工业相机之所以会发生丢帧的现象,其实就是资料通道的堵塞,无法及时处理,所以新的图像进来时,前一张可能被迫丢弃,或是新的图像被迫丢弃。要解决这问题,需要设计者针对驱动程序与工业相机硬件资料传输的每个环节进行精密的设计。

2:工业相机输入、输出接口有哪些?

在机器视觉检测技术中,工业相机的输入、输出接口有Camera Link、IEEE 1394、USB2.0、Ethernet、USB3.0几种;

3:知道被测物的长、宽、高以及要求的测量精度,如何来选择CCD 相机和工业镜头,选择以上器件需要注意什么?

首先要选择合适的镜头。选择镜头应该遵循以下原则:

1).与之相配的相机的芯片尺寸是多大;

2).相机的接口类型是哪种的,C 接口,CS 接口还是其它接口;

3).镜头的工作距离;

4).镜头视场角;

5).镜头光谱特性;

6).镜头畸变率;

7).镜头机械结构尺寸;

选择CCD 相机时,应该综合考虑以下几个方面:

1).感光芯片类型;CCD 还是CMOS

2).视频特点;包括点频、行频。

3).信号输出接口;

4).相机的工作模式:连续,触发,控制,异步复位,长时间积分。

5).视频参数调整及控制方法:Manual、RS232.

同时,选择CCD 的时候应该注意,l inch = 16mm 而不是等于25.4mm.

4:CCD 相机与CMOS 相机的区别在哪里?

1) 成像过程

CCD 与CMOS 图像传感器光电转换的原理相同,他们最主要的差别在于信号的读出过程不同;由于CCD仅有一个(或少数几个)输出节点统一读出,其信号输出的一致性非常好;而CMOS 芯片中,每个像素都有各自的信号放大器,各自进行电荷-电压的转换,其信号输出的一致性较差。但是CCD 为了读出整幅图像信号,要求输出放大器的信号带宽较宽,而在CMOS 芯片中,每个像元中的放大器的带宽要求较低,大大降低了芯片的功耗,这就是CMOS芯片功耗比CCD 要低的主要原因。尽管降低了功耗,但是数以百万的放大器的不一致性却带来了更高的固定噪声,这又是CMOS 相对CCD 的固有劣势。

2) 集成性

从制造工艺的角度看,CCD 中电路和器件是集成在半导体单晶材料商,工艺较复杂,世界上只有少数几家厂商能够生产CCD 晶元,如DALSA、SONY、松下等。CCD 仅能输出模拟电信号,需要后续的地址译码器、模拟转换器、图像信号处理器处理,并且还需要提供三组不同电压的电源同步时钟控制电路,集成度非常低。而CMOS是集成在被称作金属氧化物的版单体材料上,这种工艺与生产数以万计的计算机芯片和存储设备等半导体集成电路的工艺相同,因此声场CMOS 的成本相对CCD 低很多。同时CMOS 芯片能将图像信号放大器、信号读取电路、A/D 转换电路、图像信号处理器及控制器等集成到一块芯片上,只需一块芯片就可以实现相机的所有基本功能,集成度很高,芯片级相机概念就是从这产生的。随着CMOS 成像技术的不断发展,有越来越多的公司可以提供高品质的CMOS 成像芯片,包括:Micron、 CMOSIS、Cypress等。

3)速度

CCD 采用逐个光敏输出,只能按照规定的程序输出,速度较慢。CMOS 有多个电荷-电压转换器和行列开关控制,读出速度快很多,目前大部分500fps 以上的高速相机都是CMOS 相机。此外CMOS 的地址选通开关可以随机采样,实现子窗口输出,在仅输出子窗口图像时可以获得更高的速度。

4)噪声

CCD 技术发展较早,比较成熟,采用PN 结或二氧化硅(SiO2)隔离层隔离噪声,成像质量相对CMOS 光电传感器有一定优势。由于CMOS 图像传感器集成度高,各元件、电路之间距离很近,干扰比较严重,噪声对图像质量影响很大。近年,随着CMOS 电路消噪技术的不断发展,为生产高密度优质的CMOS 图像传感器提供了良好的条件。 

5:工业相机都有哪些主要参数?

1)分辨率

2)速度(帧频/行频)

3)噪声

4)信噪比

5)动态范围

6) 像元深度

7)光谱响应

8)光学接口

6:工业相机的分辨率是如何定义的?

分辨率是相机最基本的参数,由相机所采用的芯片分辨率决定,是芯片靶面排列的像元数量。通常面阵相机的分辨率用水平和垂直分辨率两个数字表示,如:1920(H)x 1080(V),前面的数字表示每行的像元数量,即共有1920个像元,后面的数字表示像元的行数,即1080 行。现在相机的分辨率通常表示多少K,如1K(1024),2K(2048),3K(4096)等。在采集图像时,相机的分辨率对图像质量有很大的影响。在对同样大的视场(景物范围)成像时,分辨率越高,对细节的展示越明显。

7:工业相机的帧频和行频是什么意思?

相机的帧频/行频表示相机采集图像的频率,通常面阵相机用帧频表示,单位fps(Frame Per second),如30fps,表示相机再1 秒钟内最多能采集30 帧图像;线阵相机通常用行频便是单位KHz,如12KHz 表示相机再1 秒钟内最多能采集12000 行图像数据。速度是相机的重要参数,在实际应用中很多时候需要对运动物体成像。相机的速度需要满足一定要求,才能清晰准确的对物体成像。相机的帧频和行频首先受到芯片的帧频和行频的影响,芯片的设计最高速度则主要是由芯片所能承受的最高时钟决定。

8: 工业相机的噪声是什么意思?

工业相机的噪声是指成像过程中不希望被采集到的,实际成像目标外的信号。根据欧洲相机测试标准EMVA1288 中,定义的相机中的噪声从总体上可分为两类:一类是由有效信号带来的符合泊松分布的统计涨落噪声,也叫散粒噪声(shot noise),这种噪声对任何相机都是相同的,不可避免,尤其确定的计算公式。(就是:噪声的平方= 信号的均值)。第二类是相机自身固有的与信号无关的噪声,它是由图像传感器读出电路、相机信号处理与放大电路等带来的噪声,每台相机的固有噪声都不一样。另外,对数字相机来说,对视频信号进行模拟转换时会产生量化噪声,量化位数越高,噪声越低。

9: 工业相机的信噪比什么意思?

 相机的信噪比定义为图像中信号与噪声的比值(有效信号平均灰度值与噪声均方根的比值),代表了图像的质量,图像信噪比越高,图像质量越好。

10: 工业相机中动态范围是什么意思?

相机的动态范围表明相机探测光信号的范围,动态范围可用两种方法来界定,一种是光学动态范围,指饱和时最大光强与等价于噪声输出的光强的比值,由芯片的特性决定。另一种是电子动态范围,他指饱和电压和噪声电压之间的比值。对于固定相机其动态范围是一个定值,不随外界条件变化而变化。在线性响应去,相机的动态范围定义为饱和曝光量与噪声等效曝光量的比值:动态范围=光敏元的满阱容量/等效噪声信号动态范围可用倍数、dB 或Bit 等方式来表示。动态范围大,则相机对不同的光照强度有更强的适应能力。

11:工业相机里的像元深度是什么意思?

数字相机输出的数字信号,即像元灰度值,具有特殊的比特位数,称为像元深度。对于黑白相机这个值的方位通常是8-16bit。像元深度定义了灰度由暗道亮的灰阶数。例如,对于8bit 的相机0 代表全暗而255 代表全亮。介于0 和25 之间的数字代表一定的亮度指标。10bit 数据就有1024个灰阶而12bit有4096个灰阶。每一个应用我们都要仔细考虑是否需要非常细腻的灰度等级。从8bit上升到10bit 或者12bit的确可以增强测量的精度,但是也同时降低了系统的速度,并且提高了系统集成的难度(线缆增加,尺寸变大),因此我们也要慎重选择。

12: 工业相机都有哪些接口?

接口是指相机与镜头之间的借口,常用的镜头的借口有C口,CS口,F口。

13: 工业相机是怎么分类的?

1)按照芯片结构分类:CCD 相机& CMOS 相机

2) 按照传感器结构分: 面阵相机 & 线阵相机

3)按照输出模式分类:模拟相机 & 数字相机

4)彩色相机&黑白相机

14: 工业相机与普通数码相机的区别在哪里?

1)工业相机的快门时间特别短,能清晰地抓拍快速运动的物体,而普通相机抓拍快速运动的物体非常模糊;

2)工业相机的图像传感器是逐行扫描的,而普通相机的图像传感器是隔行扫描的,甚至是隔三行扫描;

3)工业相机的拍摄速度远远高于普通的相机;工业相机每秒可以拍摄十幅到几百幅的图片,而普通相机只能拍摄2-3 幅图像;

4)工业相机输出的是裸数据,它的光谱范围也往往比较宽,比较适合进行高质量的图像处理算法,普遍应用于机器视觉系统中。而普通相机拍摄的图片,它的光谱范围只适合人眼视觉,并且经过了MPEG 压缩,图像质量也较差;

15: 如何选择线阵相机?

1)计算分辨率:幅宽除以最小检测精度得出每行需要的像素。

2)检测精度:幅宽除以像素得出实际检测精度。

3)扫描行数:每秒运动速度长度除以精度得出每秒扫描行数。

根据以上计算结果选择线阵相机举例如下:

如幅宽为1600 毫米、精度1 毫米、运动速度22000mm/s 相机:1600/1=1600 像素 最少2000像素,选定为2k 相机 1600/2048=0.8 实际精度22000mm/0.8mm=27.5KHz 应选定相机为2048 像素28kHz 相机

16: 线阵相机有哪些特点?

1)线阵相机使用的线扫描传感器通常只有一行感光单元(少数彩色线阵使用三行感光单元的传感器)

2)线阵相机每次只采集一行图像;

3)线阵相机每次只输出一行图像;

4)与传统的面阵相机相比,面阵扫描每次采集若干行的图像并以帧方式输出。

17:为什么要在机器视觉检测中使用线阵相机?

1)线阵相机有更高的分辨率;线阵相机每行像素一般为1024,2048,4096,8012;而一般的面阵相机仅为640,768,1280,大于2048的面阵很少见。

2)线阵相机的采集速度更快;不同型号的线阵相机采集速度从每秒5000 行-60000 行不等,用户可以选择没几行或者每十几行即构成一帧图像进行处理一次,因此可以达到很高的帧率。

3)线阵相机可以不间断的连续采集和处理;线阵相机可以对直线运动的物体(直线导轨,滚筒上的纸张,织物,印刷品,传送带上的物体等)进行连续采集。

4)线阵相机有更简单合理的构造。与面阵相机相比,线阵相机不会浪费分辨率采集到无用数据。

18:什么是智能工业相机?

智能工业相机并不是一台简单的相机,而是一种高度集成化的微小型机器视觉系统。它将图像的采集、处理与通信功能集成于单一相机内,从而提供了具有多功能、模块化、高可靠性、易于实现的机器视觉解决方案。智能工业相机一般由图像采集单元、图像处理单元、图像处理软件、网络通信装置等构成。由于应用了最新的DSP、FPGA 及大容量存储技术,其智能化程度不断提高,可满足多种机器视觉的应用需求。

19: CCD 芯片与CMOS 芯片的主要参数有哪些?

在机器视觉中主要采用的两类光电传感芯片分别为CCD 芯片和CMOS 芯片,CCD 是ChargeCoupled Device(电荷耦合器件)的缩写,CMOS 是Complementary Metal-Oxide-Semiconductor Transistor(互补金属氧化物半导体)的缩写。无论是CCD 还是CMOS,他们的作用都是通过光电效应将光信号转换成电信号(电压/电流),进行存储以获得图像。CCD 芯片与CMOS 芯片的主要参数有:

1)像元尺寸

像元尺寸指芯片像元阵列上每个像元的实际物理尺寸,通常的尺寸包括14um,10um,9um , 7um ,6.45um ,3.75um 等。像元尺寸从某种程度上反映了芯片的对光的响应能力,像元尺寸越大,能够接收到的光子数量越多,在同样的光照条件和曝光时间内产生的电荷数量越多。对于弱光成像而言,像元尺寸是芯片灵敏度的一种表征。

2)灵敏度

灵敏度是芯片的重要参数之一,它具有两种物理意义。一种指光器件的光电转换能力,与响应率的意义相同。即芯片的灵敏度指在一定光谱范围内,单位曝光量的输出信号电压(电流),单位可以为纳安/勒克斯nA/Lux、伏/瓦(V/W)、伏/勒克斯(V/Lux)、伏/流明(V/lm)。另一种是指器件所能传感的对地辐射功率(或照度),与探测率的意义相同,。单位可用瓦(W)或勒克斯(Lux)表示。

3)坏点数

由于受到制造工艺的限制,对于有几百万像素点的传感器而言,所有的像元都是好的情况几乎不太可能,坏点数是指芯片中坏点(不能有效成像的像元或相应不一致性大于参数允许范围的像元)的数量,换点数是衡量芯片质量的重要参数。

4)光谱响应

光谱响应是指芯片对于不同光波长光线的响应能力,通常用光谱响应曲线给出。

20:线阵相机与面阵相机的区别在哪里?

线阵CCD 工业相机主要应用于工业、医疗、科研与安全领域的图象处理。在机器视觉领域中,线阵工业相机是一类特殊的视觉机器。与面阵工业相机相比,它的传感器只有一行感光元素,因此使高扫描频率和高分辨率成为可能。线阵工业相机的典型应用领域是检测连续的材料,例如金属、塑料、纸和纤维等。被检测的物体通常匀速运动 , 利用一台或多台工业相机对其逐行连续扫描 , 以达到对其整个表面均匀检测。可以对其图像逐行进行处理 , 或者对由多行组成的面阵图像进行处理。另外线阵工业相机非常适合测量场合,这要归功于传感器的高分辨率 , 它可以准确测量到微米。

对于面阵CCD 来说,应用面较广,如面积、形状、尺寸、位置,甚至温度等的测量。面阵CCD 的优点是可以获取二维图像信息,测量图像直观。缺点是像元总数多,而每行的像元数一般较线阵少,帧幅率受到限制,而线阵CCD 的优点是一维像元数可以做得很多,而总像元数角较面阵CCD 工业相机少,而且像元尺寸比较灵活,帧幅数高,特别适用于一维动态目标的测量。

21:线阵相机是如何定义的?

线阵工业相机,机顾名思义是呈“线”状的。虽然也是二维图像,但极长,几K 的长度,而宽度却只有几个像素的而已。一般上只在两种情况下使用这种相机:

1)被测视野为细长的带状,多用于滚筒上检测的问题。

2)需要极大的视野或极高的精度。

22:选择工业相机的一般步骤是什么?

第一步,首先需要知道系统精度要求和工业相机分辨率;

第二步,需要知道系统速度要求与工业相机成像速度;

第三步,需要将工业相机与图像采集卡一并考虑,因为这涉及到两者的匹配;

第四步,价格的比较。

23:如何用机器视觉系统要求的精度来计算出需要选用相机的分辨率(像素)?

知道实际检测精度来反推该选用多大像素的工业相机可以通过公式来计算得出:X 方向系统精度(X 方向像素值)=视野范围(X 方向)/CCD 芯片像素数量( X 方向);Y 方向系统精度(Y 方向像素值)=视野范围(Y方向)/CCD 芯片像素数量( Y 方向)来获得。当然理论像素值的得出,要由系统精度及亚像素方法综合考虑;

24:如何根据实际要求的检测速度来推导出该选用什么速度的工业相机?

系统单次运行速度=系统成像(包括传输)速度+系统检测速度,虽然系统成像(包括传输)速度可以根据工业相机异步触发功能、快门速度等进行理论计算,最好的方法还是通过软件进行实际测试;

25:工业相机需要与图像采集卡匹配哪些才能正常使用?

工业相机需要与图像采集卡匹配好才能正常使用,一般需要匹配以下几个:

a、视频信号的匹配,对于黑白模拟信号相机来说有两种格式,CCIR和RS170(EIA),通常采集卡都同时支持这两种工业相机;

b、分辨率的匹配,每款板卡都只支持某一分辨率范围内的相机;

c、特殊功能的匹配,如要是用相机的特殊功能,先确定所用板卡是否支持此功能,比如,要多部相机同时拍照,这个采集卡就必须支持多通道,如果相机是逐行扫描的,那么采集卡就必须支持逐行扫描;

d、接口的匹配,确定相机与板卡的接口是否相匹配。如CameraLink、Firewire1394 等。

26:USB 接口的工业相机与1394 接口工业相机的区别在哪里?

USB 相机与1394 相机从接口方面来说影响到我们选择的因素主要有以下几点:

a)协议规范:1394 设备相关工业规范协议有50 多种,涉及到从摄像机、工业相机、等设备。各厂家的1394 工业相机大都遵循DCAM 工业规范。而USB 工业相机的接口是近期从商业PC 应用中发展起来的商业规范。

b)供电方式:1394 工业相机操作电压为8 到30VDC,USB 工业相机工作电压是5VDC。从供电范围角度看,1394接口符合工业领域单独设备的直流供电要求,比如12VDC 或24VDC;而USB 接口采用电子线路TTL 标准电压供电,一般做设备内部供电使用。

c)操作系统配合:1394 接口工业相机在系统重新启动后能够保持原先的地址不变,而USB 接口工业相机每次启动后都需要系统重新分配地址的。

d)数据传输:1394 接口在处理多台工业相机的数据传输时,有着先天的优势。从发展背景来看,USB 接口是承接RS232 接口的新一代高速数据传输接口,而1394 接口的工业相机是作为替代SCSI 和PCI 总线的而设计的。

27:智能工业相机与一般工业相机区别在哪里?

智能相机与工业相机区别,简言之:智能相机是一种高度集成化的微小型机器视觉系统;而工业相机是机器视觉系统的组成部分之一。

28:智能工业相机中图像采集单元的主要功能是什么?

在智能相机中,图像采集单元相当于普通意义上的CCD/CMOS 相机和图像采集卡。它将光学图像转换为模拟/数字图像,并输出至图像处理单元。

29:智能工业相机中图像处理单元起什么作用

在智能工业相机中,图像处理单元类似于图像采集、处理卡。它可对图像采集单元的图像数据进行实时的存储,并在图像处理软件的支持下进行图像处理。

30:智能工业相机中图像处理软件的主要作用是什么?

图像处理软件主要在图像处理单元硬件环境的支持下,完成图像处理功能。如几何边缘的提取、Blob、灰度直方图、OCV/OVR、简单的定位和搜索等。在智能相机中,以上算法都封装成固定的模块,用户可直接应用而无需编程。

31:智能工业相机中网络通信装置起什么作用?

网络通信装置是智能相机的重要组成部分,主要完成控制信息、图像数据的通信任务。智能相机一般均内置以太网通信装置,并支持多种标准网络和总线协议,从而使多台智能相机构成更大的机器视觉系统。

32:从那几个方面来比较工业相机的几种接口?


33:选择工业相机时应注意什么?

1)根据应用的不同来决定是需要选用CCD 还是CMOS 相机CCD 工业相机主要应用在运动物体的图像提取,如贴片机,当然随着CMOS 技术的发展,许多贴片机也在选用CMOS 工业相机。用在视觉自动检查的方案或行业中一般用CCD 工业相机比较多。 CMOS 工业相机由成本低,功耗低也应用越来越广泛。

2)分辨率的选择,首先考虑待观察或待测量物体的精度,根据精度选择分辨率。其次看工业相机的输出,若是体式观察或机器软件分析识别,分辨率高是有帮助的;若是VGA 输出或USB输出,在显示器上观察,则还依赖于显示器的分辨率,工业相机的分辨率再高,显示器分辨率不够,也是没有意义的;利用存储卡或拍照功能,工业相机的分辨率高也是有帮助的。

3)与镜头的匹配,传感器芯片尺寸需要小于或等于镜头尺寸,C 或CS 安装座也要匹配(或者增加转接口);

4)相机帧数选择,当被测物体有运动要求时,要选择帧数高的工业相机。但一般来说分辨率越高,帧数越低;

34:如何设置工业相机中的“自动增益控制”功能?

工业相机内有一个将来自 CCD 的信号放大到可以使用水准的视频放大器,其放大即增益,等效于有较高的灵敏度,然而在亮光照的环境下放大器将过载,使视频信号畸变。当开关在 ON 时,在低亮度条件下完全打开镜头光圈,自动增加增益以获得清晰的图像。开关在 OFF时,在低亮度下可获得自然而低噪声的图像。

35:如何来选购图像采集卡?

在选购及使用图像采集卡时,需要考虑的两个关键性的因素为:硬件的可靠性以及软件的支持。在其它条件都同等的情况下,一块复杂具有更多器件的卡会比器件较少的卡耗散更多的热量。好的设计会采用更多的ASIC(Applica tion-specific integrated circuits)和可编程器件以减少电子器件的数量,而达到更高的功能。还可以选择具有更少的无用功能的卡以减少不必要的麻烦。过压保护是可靠性的一个重要指标。接近高压会在视频电缆产生很强的电涌,在视频输入端和I/O 口加过压保护电路可保护采集卡不会被工业环境电磁干扰会产生的高压击穿。选择采集卡的同时还必须考虑此视觉系统要选用的软件与采集卡是否兼容,是否使用方便,其软件是否要求付费等。

36:高速工业相机与一般工业相机相比有哪些优势?

1)高速实时无压缩图像记录,实时显示,设定速度回显;

2)系统采用直接将数据写入硬盘的记录方式,解决了传统内存记录方式记录时间短的问题,同时解决了传统采集;

系统传输速度受PCI 总线带宽限制的问题;

3)保证100%不丢帧,解决了传统内存记录方式易丢帧、缺乏断电保护等问题;

4)系统独立工作,几乎不占用计算机资源,可靠性高;

5)一套系统中可支持多块板卡和相机,同时对多个目标进行跟踪记录;

6)支持多种外部信号的叠加融合;

7)支持多种图像格式,有多种软硬件外触发功能;

8)软件接口简单,便于二次开发和实时处理。

37:红外相机有哪些类别?

红外相机主要近红外相机、短波红外相机、高速红外相机、中波红外系列相机、基于DSP长波红外系列相机有下几类;

38:如何来提高工业相机的灵敏度?


39:工业相机的白平衡是什么?

白平衡(White Balance)是彩色相机中采用的技术,白平衡是对红、绿、蓝三个分量的平衡,以使相机能反映实际景物真实颜色。由于光敏元件在不同的光照条件下RGB 三个分量的输出是不平衡的,从而会差生图像在色彩上的失真,偏蓝或者偏红,因此需要白平衡来还原图像的色彩。通常相机完成白平衡可以分为自动和手动白平衡两种方式,此外还可以通过软件实现白平衡。


41:如何提高图像的信噪比?

信噪比SNR(Signal to NoiseRatio)反应相机成像的抗干扰能力,反应在画质上就是画面是否干净无噪点。以下技术可提高图像的信噪比使采集的图像更清晰干净。

42:如何提高工业相机的动态范围?


43:如何通过调整工业相机来提高图像质量?


44:工业相机的机械快门与电子快门有什么区别?

机械快门:用弹簧或是电磁手段,控制几片叶片的开闭,或是两层帘幕像舞台“拉幕”一样左右或上下以一定宽度的缝隙“划过”成像像场窗口,让窗口获得指定时间长短的“见光机会”——这就使通常的机械快门概念。

电子快门:通过电路直接操作CCD/CMOS 控制快门曝光,被称为电子快门。利用了CCD/CMOS 不通电不工作的原理,在CCD 不通电的情况下,尽管窗口“大敞开”,但是并不能产生图像。如果在按下快门钮时,使用电子时间电路,使CCD/CMOS 只通电“一个指定的时间长短”,就也能获得像有快门“瞬间打开”一样的效果。

一般而言,机械快门的好处是不用电即可工作,缺点是高速和低速档比较会不准确。电子快门比纯机械快门更精确,性能更高(最短曝光时间可以更短等等),可靠性更高,寿命更长。

45:数字工业相机与模拟工业相机的区别是什么?

从概念上来讲,这两种相机只在输出信号上有区别,模拟工业相机输出的是模拟信号,数字工业相机输出的是数字信号。也就是说模拟工业相机的A/D 转换是在工业相机之外进行的,数字工业相机的A/D 转换是在工业相机内完成的。

46:如何来保养工业相机?

1)尽量避免将摄像头直接指向阳光,以免损害摄像头的图像感应器件;

2)避免将摄像头和油、蒸汽、水汽、湿气和灰尘等物质接触,避免和水直接接触;

3)不要使用刺激的清洁剂或者有机溶剂擦拭摄像头;

4)不要拉扯和扭转连接线;

5)非必要情况下,自己不要随意拆卸摄像头,试图碰触其内部零件,这容易对摄像头造成损伤,认为损伤经销商是不保修的;

6)仓储时,应当将摄像头存放到干净、干燥的地方。

47:什么是图像采集卡?

图像采集卡又称为图像卡,它将相机的图像视频信号,以帧为单位传送到计算机的内存和VGA帧存,供计算机处理,存储,显示和传输等使用。在机器视觉系统中,图像采集卡采集到的图像供处理器做出工件是否合格、运动物体的运动偏差量、缺陷所在位置等的处理。

48:图像采集卡都有哪些类别?

1. 根据输入信号可分为模拟图像采集卡和数字图像采集卡;

2.根据采集信号颜色可分为黑白图像采集卡和彩色图像采集卡;

49:分辨率和像素的关系?

分辨率和像素是成正比的,像素越大,分辨率越高。像素越高,最大输出的影像分辨率也越高。

50:工业相机的CCD/CMOS 芯片尺寸与图像尺寸的关系?


 

 


相关资料推荐 / Download 查看更多
发布时间: 2018 - 01 - 11
人工智能工程师必备干货如果要问当下互联网什么最热门?毫无疑问是人工智能。目前,世界上主要发达国家都已经将人工智能作为国家级发展战略。那么,踩在下一个时代的风口浪尖上,普通程序员如何向人工智能靠拢?为此特别推荐10款托管在码云上的人工智能开源软件,希望能够给大家带来一点点帮助和启发。当然,如果你很喜欢以下提到的项目,别忘了分享给其他人。1、项目名称:智能家居的架构项目简介: 智能家居的概念(smart home , home auto)很早以前就有了,现在随着硬件成本的下降,及 google 收购 nest 等,智能家居热度升高。 本智能家居的架构,包括服务器端,web 网页,android 手机客户端,各种测试脚本,基本上基础架构都已经实现,并可实际调试。由于精力有限智能控制部分还在合作开发中。2、项目名称:Living-Robot 开源机器人项目简介: 当我们在网上搜索开源机器人时,我们发现都是部分功能的代码和 demo,我们不能找到一个完整的项目,直接下载到我们的树莓派上,上电,然后就可以动、可以玩了。rtp 已经做到这点了;事实上它已经可以动并说话了,它是基于 ros 的完整的机器人代码,找来1块树莓派,接上几个电机和喇叭,ok,它已经可以动、可以玩、可以愉快地添加自己的代码了;虽然粗糙但是基本满足这个需求了(子功能还需要各种完善)。什么是Living-Robot:想象一下当你养了一只兔子、或者一只蜥蜴作为宠物时,它们从来不会和你卖萌扮可爱,根本不会回答你任何或机智或愚蠢透顶的问题;但是我们还是养了这样的宠物;为什么?因为它是“活着的”的。 rtp 要人工创造这种 Living 的感觉,我们称之为“Living-Robot”。3、项目名称:深度学习人脸识别引擎 JAVA SDK项目简介: 本项目是千搜科技第四代人脸识别引擎 java 接口...
发布时间: 2018 - 01 - 09
1、初始化参数  在接线之前,先初始化参数。  在控制卡上:选好控制方式;将PID参数清零;让控制卡上电时默认使能信号关闭;将此状态保存,确保控制卡再次上电时即为此状态。  在伺服电机上:设置控制方式;设置使能由外部控制;编码器信号输出的齿轮比;设置控制信号与电机转速的比例关系。一般来说,建议使伺服工作中的最大设计转速对应9V的控制电压。  2、接线  将控制卡断电,连接控制卡与伺服之间的信号线。以下的线是必须要接的:控制卡的模拟量输出线、使能信号线、伺服输出的编码器信号线。复查接线没有错误后,电机和控制卡(以及PC)上电。此时电机应该不动,而且可以用外力轻松转动,如果不是这样,检查使能信号的设置与接线。用外力转动电机,检查控制卡是否可以正确检测到步进伺服电机位置的变化,否则检查编码器信号的接线和设置  3、试方向  对于一个闭环控制系统,如果反馈信号的方向不正确,后果肯定是灾难性的。通过控制卡打开伺服的使能信号。这是伺服应该以一个较低的速度转动,这就是传说中的“零漂”。  一般控制卡上都会有抑制零漂的指令或参数。使用这个指令或参数,看电机的转速和方向是否可以通过这个指令(参数)控制。如果不能控制,检查模拟量接线及控制方式的参数设置。确认给出正数,电机正转,编码器计数增加;给出负数,电机反转转,编码器计数减小。如果电机带有负载,行程有限,不要采用这种方式。测试不要给过大的电压,建议在1V以下。如果方向不一致,可以修改控制卡或电机上的参数,使其一致。  4、抑制零漂  在闭环控制过程中,零漂的存在会对控制效果有一定的影响,最好将其抑制住。使用控制卡或伺服上抑制零漂的参数,仔细调整,使电机的转速趋近于零。由于零漂本身也有一定的随机性,所以,不必要求伺服电机转速绝对为零。  5、建立闭环控制  再次通过控制卡将伺服使能信号放开,在控制卡上输入一个较小的比例增益,至于多大算较小,这...
发布时间: 2018 - 01 - 06
图像处理与机器视觉第一章 图像增强的研究和发展现状  图像在采集过程中不可避免的会受到传感器灵敏度、噪声干扰以及模数转换时量化问题等各种因素的影响,而导致图像无法达到令人满意的视觉效果,为了实现人眼观察或者机器自动分析、识别的目的,对原始图像所做的改善行为,就被称作图像增强。图像增强包涵了非常广泛的内容,凡是改变原始图像的结构关系以取得更好的判断和应用效果的所有处理手段,都可以归结为图像增强处理,其目的就是为了改善图像的质量和视觉效果,或将图像转换成更适合于人眼观察或机器分析、识别的形式,以便从中获取更加有用的信息。  常用的图像增强处理方式包括灰度变换、直方图修正、图像锐化、噪声去除、几何畸变校正、频域滤波和彩色增强等。由于图像增强与感兴趣的物体特性、观察者的习惯和处理目的密切相关,尽管处理方式多种多样,但它带有很强的针对性。因此,图像增强算法的应用也是有针对性的,并不存在一种通用的、适应各种应用场合的增强算法。于是,为了使各种不同特定目的的图像质量得到改善,产生了多种图像增强算法。这些算法根据处理空间的不同分为基于空间域的图像增强算法和基于变换域的图像增强算法。基于空间域的图像增强算法又可以分为空域的变换增强算法、空域的滤波增强算法以及空域的彩色增强算法;基于变换域的图像增强算法可以分为频域的平滑增强算法、频域的锐化增强算法以及频域的彩色增强算法。  尽管各种图像增强技术已取得了长足的发展,形成了许多成熟、经典的处理方法,但新的增强技术依然在日新月异地发展完善,不断推陈出新,其中尤其以不引起图像模糊的去噪声方法(如空域的局部统计法)和新的频域滤波器增强技术(如小波变换,K-L变换等)最为引人瞩目。  第二章 图像增强的基本方法  一般而言,图像增强是根据具体的应用场景和图像的模糊情况而采用特定的增强方法来突出图像中的某些信息,削弱或消除无关信息,以达到强调图像的整体或局...
发布时间: 2018 - 01 - 05
Python 图像处理库 Pillow 入门(含代码)Pillow是Python里的图像处理库(PIL:Python Image Library),提供了了广泛的文件格式支持,强大的图像处理能力,主要包括图像储存、图像显示、格式转换以及基本的图像处理操作等。 1)使用 Image 类PIL最重要的类是 Image class, 你可以通过多种方法创建这个类的实例;你可以从文件加载图像,或者处理其他图像, 或者从 scratch 创建。要从文件加载图像,可以使用open( )函数,在Image模块中: from PIL import Image im = Image.open("E:/photoshop/1.jpg")加载成功后,将返回一个Image对象,可以通过使用示例属性查看文件内容: print(im.format, im.size, im.mode)('JPEG', (600, 351), 'RGB')format 这个属性标识了图像来源。如果图像不是从文件读取它的值就是None。size属性是一个二元tuple,包含width和height(宽度和高度,单位都是px)。 mode 属性定义了图像bands的数量和名称,以及像素类型和深度。常见的modes 有 “L” (luminance) 表示灰度图像, “RGB” 表示真彩色图像, and “CMYK” 表示出版图像。如果文件打开错误,返回 IOError 错误。只要你有了 Image 类的实例,你就可以通过类的方法处理图像。比如,下列方法可以显示图像:im.show()2)读写图像PIL 模块支持大量图片格式。使用在 Image 模块的 op...
发布时间: 2017 - 12 - 25
当机器视觉遇到“人工智能-工业4.0”.....人们感知外界信息的80%是通过眼睛获得的,图像包含的信息量是最巨大的。机器视觉给机器人装上了“眼睛”,成为工业4.0的重点,互促发展是技术的必然,更是时代的选择。 工业4.0是什么?在人类历史发展前期,生产力的增长几不可察,生活水平的提升也非常缓慢。而从200多年前开始,生产力发生了飞跃性变化,这一翻天覆地的变化得益于工业革命。如果将工业的发展历史分成4个时代,那么工业革命1.0使机器生产代替了手工劳动;工业革命2.0实现了流水线生产;工业革命3.0实现了自动化生产。工业生产方式则依次经历了机械化、流水线生产、自动化。2013年4月,在汉诺威工业博览会上,德国正式推出工业4.0的概念,旨在提升制造业的智能化水平。德国工业4.0是指利用物联信息系统(Cyber—PhysicalSystem简称CPS)将生产中的供应,制造,销售信息数据化、智慧化,最后达到快速、有效、个人化的产品供应。其实质是“互联网+制造”。在成产层面,“工业4.0”是生产设备间的互联、设备和产品的互联、虚拟与现实的互联,甚至是未来的万物互联。工业4.0理念的提出促进了智能工厂的实现,生产方式必将迎来巨大改变。工业4.0--机器视觉是核心目前视觉技术在工业生产中的应用大致可分为两类:质量控制和辅助生产。其中,质量控制主要是指对产品缺陷的检测,识别不良品,此类设备在国内外自动化生产线已有广泛使用。辅助生产则是利用视觉技术给机器人提供动作执行依据,国内市场尚待开发。工业机器人的发展,势必引起机器视觉新增长。我国正处于工业机器人的发展拐点,市场潜力巨大,据国际机器人联盟(IFR)估计,中国市场对工业机器人的发展占主导地位,2018年全球三分之一的工业机器人将会安装在中国,这势必会引发机器视觉的广泛应用。机器视觉是人类视觉的延伸,与多种技术的融合逐步加深,将成...
发布时间: 2017 - 12 - 18
最新机器人视觉系统介绍,给机器人装上“眼睛”机器视觉概述使机器具有像人一样的视觉功能,从而实现各种检测、判断、识别、测量等功能。一个典型的机器视觉系统组成包括:图像采集单元(光源、镜头、相机、采集卡、机械平台),图像处理分析单元(工控主机、图像处理分析软件、图形交互界面),执行单元(电传单元、机械单元)机器视觉系统通过图像采集单元将待检测目标转换成图像信号,并传送给图像处理分析单元。图像处理分析单元的核心为图像处理分析软件,它包括图像增强与校正、图像分割、特征提取、图像识别与理解等方面。输出目标的质量判断、规格测量等分析结果。分析结果输出至图像界面,或通过电传单元(PLC等)传递给机械单元执行相应操作,如剔除、报警等,或通过机械臂执行分拣、抓举等动作。机器视觉优势机器视觉系统具有高效率、高度自动化的特点,可以实现很高的分辨率精度与速度。机器视觉系统与被检测对象无接触,安全可靠。人工检测与机器视觉自动检测的主要区别有: 机器视觉的应用领域•识别标准一维码、二维码的解码光学字符识别(OCR)和确认(OCV)•检测色彩和瑕疵检测零件或部件的有无检测目标位置和方向检测•测量尺寸和容量检测预设标记的测量,如孔位到孔位的距离•机械手引导输出空间坐标引导机械手精确定位 机器视觉系统的分类•智能相机•基于嵌入式•基于PC 机器视觉系统的组成•图像获取:光源、镜头、相机、采集卡、机械平台•图像处理与分析:工控主机、图像处理分析软件、图形交互界面。•判决执行:电传单元、机械单元•光源---种类LED:寿命长/可以有各种颜色/便于做成各种复杂形状/光均匀稳定/可以闪光;荧光灯:光场均匀/价格便宜/亮度较LED高;卤素灯:亮度特别高/通过光纤传输后可做成;氙灯:使用寿命约1000小时/亮度高,色温与日光接近。(大部分机器视觉照明采用LED) •光源---光路...
发布时间: 2017 - 12 - 12
西门子PLC通讯方式你知道多少?西门子作为最早进入中国市场的工控厂家,其市场占有率一直非常高。西门子PLC的品质非常好,其网络稳定性、开放性深受工控人员的喜爱,而且编程软件分类多,使用方便。在国内工控界具有显著地位。虽然大家对西门子PLC都有一定的了解,但要你说出西门子PLC各种通信方式的特点,相信很多人都不能完整答出。下面就是几种常见的西门子通信方式? 一、PPI通讯PPI协议是S7-200CPU最基本的通信方式,通过原来自身的端口(PORT0或PORT1)就可以实现通信,是S7-200 CPU默认的通信方式。 二、RS485串口通讯第三方设备大部分支持,西门子S7 PLC可以通过选择自由口通信模式控制串口通信。最简单的情况是只用发送指令(XMT)向打印机或者变频器等第三方设备发送信息。不管任何情况,都必须通过S7 PLC编写程序实现。当选择了自由口模式,用户可以通过发送指令(XMT)、接收指令(RCV)、发送中断、接收中断来控制通信口的操作。 三、MPI通讯MPI通信是一种比较简单的通信方式,MPI网络通信的速率是19.2Kbit/s~12Mbit/s,MPI网络最多支持连接32个节点,最大通信距离为50M。通信距离远,还可以通过中继器扩展通信距离,但中继器也占用节点。MPI网络节点通常可以挂S7-200、人机介面、编程设备、智能型ET200S及RS485中继器等网络元器件。西门子PLC与PLC之间的MPI通信一般有3种通信方式:1、全局数据包通信方式2、无组态连接通信方式3、组态连接通信方式 四、以太网通讯以太网的核心思想是使用共享的公共传输通道,这个思想早在1968年来源于厦威尔大学。 1972年,Metcalfe和David Boggs(两个都是著名网络专家)设置了一套网络,这套网络把不同的ALTO计算机连接在一起,同时还连...
发布时间: 2017 - 12 - 11
盘点 | 机器人视觉工程师必须知道的工业相机相关问题1:工业相机的丢帧的问题是由什么原因引起的?经常会有一些机器视觉工程师认为USB接口的工业相机会造成丢帧现象。一般而言,工业相机丢帧与工业相机所采用的传输接口是没有关系的,无论是USB,还是1394、GigE、或者是CameraLink。设计不良的驱动程序或工业相机硬件才是造成丢帧的真正原因:设计不良的工业相机之所以会发生丢帧的现象,其实就是资料通道的堵塞,无法及时处理,所以新的图像进来时,前一张可能被迫丢弃,或是新的图像被迫丢弃。要解决这问题,需要设计者针对驱动程序与工业相机硬件资料传输的每个环节进行精密的设计。2:工业相机输入、输出接口有哪些?在机器视觉检测技术中,工业相机的输入、输出接口有Camera Link、IEEE 1394、USB2.0、Ethernet、USB3.0几种;3:知道被测物的长、宽、高以及要求的测量精度,如何来选择CCD 相机和工业镜头,选择以上器件需要注意什么?首先要选择合适的镜头。选择镜头应该遵循以下原则:1).与之相配的相机的芯片尺寸是多大;2).相机的接口类型是哪种的,C 接口,CS 接口还是其它接口;3).镜头的工作距离;4).镜头视场角;5).镜头光谱特性;6).镜头畸变率;7).镜头机械结构尺寸;选择CCD 相机时,应该综合考虑以下几个方面:1).感光芯片类型;CCD 还是CMOS2).视频特点;包括点频、行频。3).信号输出接口;4).相机的工作模式:连续,触发,控制,异步复位,长时间积分。5).视频参数调整及控制方法:Manual、RS232.同时,选择CCD 的时候应该注意,l inch = 16mm 而不是等于25.4mm.4:CCD 相机与CMOS 相机的区别在哪里?(1) 成像过程...
发布时间: 2017 - 12 - 04
工业机器人视觉引导系统MVRobotVision机器人视觉引导系统是配合工业机器人工作的机器视觉系统,提供高效精准的视觉引导功能,适应多维运动工业机器人对视觉系统轻便、高速、高精度的要求,配合工业机器人实现高效智能化的产线改造,为自动化产线,传送带分拣,组装、自动码垛卸垛以及其他复杂加工等机器人应用提供智能视觉引导解决方案。2D视觉引导MVRobotVision机器人2D视觉引导系统主要应用于流水线传送跟踪、精确定位、姿态调整三个方面。3D视觉引导MVRobotVision机器人3D视觉引导系统主要应用于工件分拣、码垛与卸垛、输送机分拣定位三个方面。系统特点柔性化定位工装:节约在多品种情况下传统的机械定位工装设计成本,使工装定位环节实现真正的柔性化。 智能形状识别引擎,智能视觉学习训练:系统内嵌智能形状识别引擎,能够识别常见的基本几何图形。对于复杂形状,系统可以进行模板学习训练,进而实现复杂形状的识别精准数据:降低环境光影响,快速准确获取扫描数据;先进高效的数据分析,实现高速精确定位识别,精度可达0.1mm
下载次数: 405
人气: 405
所属分类: 机器视觉
技术分享
 
2020 / 11 / 18
单片机能代替PLC吗?  单片机能代替PLC吗?由于面粉可以代替面条,所以这个问题的答案是否定的,第一次听到这个答案,很多人可能会有疑问。为...
 
联系方式

深圳市龙华新区观澜第三工业区观中街5号联为科技园

1505031685@qq.com

15323438773 杨老师  

0755-29495142

预约免费试听
  • 您的姓名:
  • *
  • 公司名称:
  • 地址:
  • 电话:
  • *
  • 传真:
  • E-mail:
  • 邮政编码:
  • 留言主题:
  • 详细说明:
  • *
     
联为智能教育专业打造自动化教育产、学、研一体化平台,成为智能制造教育领导者。联为plc培训班精心打造专业培训实操基地,专门为学员研发一批教学设备,包括机器人学习教学连线,plc培训学习教学连线,工业机器人培训、plc编程培训等专业的教学设备,让学员真正理论实践一体,学以致用,从实践交流中体会知识的精髓,来一场完美的职业转身。
扫码学习
深圳联为智能教育感谢您的关注!
plc学习
在线直播间
plc培训班
小胡老师
Copyright ©2005 - 2013 深圳市联为智能教育有限公司


犀牛云提供企业云服务
5
电话
  • 15323438773
6
二维码
回到顶部